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Abstract 

    The study investigates the use of the Rényi entropy 

algorithm with variable threshold and a signal temporal 

multiscaling approach for analyzing RR interval signals. 

The study involved 8-minute ECG recordings of 90 

participants from the PhysioNet database and grouped 

into three groups: normal sinus rhythm, cardiac 

arrhythmia, and congestive heart failure. A time coarse-

graining algorithm was used to obtain different temporal 

scales of the original signal. Rényi entropy probabilities of 

each scale-factored signal were calculated using a method 

of density based on sequences of the RR interval time 

series. ANOVA and post-hoc t-test were used to determine 

significant differences between the multiscaled Rényi 

entropy measures of the different groups of RR interval 

signals. The novel multiscaled Rényi entropy analysis 

provided enhanced significant discrimination between 

healthy and pathological (NSR vs. ARR and NSR vs. CHF) 

signals at post hoc t-test probability values of p< 5x10-6 

and within pathological signals (ARR vs. CHF) at p< 5x10-

3. The study concludes that applying a joint approach of 

cardiac signal temporal multiscaling and calculating its 

modified Rényi entropy with variable thresholding 

provides an optimized approach to identifying and 

separating healthy and pathological cardiac signals, and 

further supports the complex nature of the heart dynamics. 

 

1. Introductory Background 

Interest in nonlinear dynamics has increased in recent 

years, particularly in cardiology, where the normal cardiac 

rhythm is linked to complex nonlinear dynamics and 

chaos. This has opened new avenues for using nonlinear 

dynamics as diagnostic tools for analyzing physiological 

data and gaining a better understanding of cardiac rhythm 

dynamics in health and disease [1]. 

Entropy-based algorithms, which quantify the regularity 

of a time series, have been applied for some time and are 

constantly being developed to improve the analysis and 

understanding of the dynamics of physiological data and 

optimize diagnostic and treatment outcomes [2]. However, 

changes in entropy may not always be associated with an 

increase in dynamic complexity [1]. This inconsistency 

may be due to the fact that widely used entropy measures 

are based on single-scale analysis and do not take into 

account the complex temporal fluctuations inherent in 

healthy physiologic control systems as a function of scales 

[1, 3]. Numerous entropy-based and multiscale entropy 

algorithms have been proposed for analysis of EEG or 

heart rate signals [4-8]. One of these is Rényi entropy, 

which has been shown as a robust metric to detect 

congestive heart failure (CHF) [9] and differentiate 

between healthy and cardiac autonomic neuropathy (CAN) 

subjects and CAN progression [10,11].  

The purpose of this study was to investigate the effect 

of extending the Rényi entropy density method to its 

temporal mutliscaling version using a second moment-

based formula. This was performed by applying the 

proposed method on RR interval signals from PhysioNet 

ECG datasets of two pathologies and normal sinus rhythm, 

to study whether there is an improvement in the 

discriminatory ability of the new method as opposed to 

using the Rényi entropy approach on its own. 

Entropy is a measure that is used in various biomedical 

applications, such as detecting cardiac autonomic 

neuropathy (CAN) in diabetes patients [10], distinguishing 

healthy subjects from congestive heart failure patients [9], 

and improving the accuracy of epileptic seizure detection 

[12]. Different types of entropy measures and multiscale 

entropy analysis have been applied to physiological time 

series, such as EEG, ECG, EMG, and EHG [2]. Multiscale 

entropy (MSE) measures have been proposed since the 

2000s to evaluate the complexity of time series by 

considering multiple time scales in physiological systems 

[3,6]. 

The efficacy of applying multiscale Rényi entropy on 

heart rate variability (HRV) was investigated, finding 

statistically significant differences between disease classes 

[10]. In another relevant study, Rényi entropy was used to 

detect cardiac autonomic neuropathy and its progression in 

diabetes patients, finding significant differences between 

controls and early CAN. The innovation introduced was to 

determine probabilities of RR intervals calculated using a 

density method based on sequences of RR intervals 

compared to the common histogram method with fixed 

thresholds [11]. Consequently, this variable threshold 

served as a considerable improvement on the originally 

existing multiscale entropy method [6]. 

A multiscale distribution entropy based on a moving 
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average multiscale process and distribution entropy to 

study short-term heart rate variability (HRV) was proposed 

[13], and a method based on multimodal multiscale 

dispersion entropy for the biometric characterization of 

heart sounds was developed [14]. The multivariate 

multiscale dispersion entropy (mvMDE) to quantify the 

complexity of multivariate time series was introduced in 

[15]. El- Dynamics, consistency, and robustness of MSE, 

multiscale time irreversibility (MTI), and multifractal 

spectrum in HRV characterization in long-term scenarios 

were also investigated [16].  

All these studies either proposed new developments on 

entropy-based measures and improvements in the 

understanding of existing ones or developed new 

applications of existing entropy-based measures; however, 

many of these studies are case-specific and may not be 

generalizable to other types of physiological and 

pathologies applications. Moreover, despite the numerous 

studies and modeling of heart signal dynamics, a deeper 

understanding of the complexity dynamics and 

fluctuations of the heart is yet to be gained, and their 

complete characteristics are constantly yet to be learned 

[17]. 

Hence, this study proposes a multiscaled Rényi entropy 

method providing a means of varying the entropy 

probability thresholding when computing Rényi entropy of 

RR interval signals as in [11], but at different temporal 

scaling factors, to improve its discriminatory performance 

tested on RR intervals extracted from normal and 

pathological ECG data from PhysioNet.   

 

2. Methodology 

A total of 90 subjects from the open-access PhysioNet 

database were included in this study. ECG recordings, each 

lasting 8 minutes, were obtained from these participants. 

The recordings were categorized into normal sinus rhythm 

(NSR) [18], cardiac arrhythmia (ARR) [19], and 

congestive heart failure (CHF) [20]. ECGs were recorded 

with a sampling rate of 128 Hz, encompassing a total of 

60,000 sample points, resulting in a duration of 469 

seconds. The ECGs were filtered using the Kaiser window 

approach [21]. Next, RR intervals (RRI) were extracted 

from the ECG using wavelet decomposition [22] to detect 

the QRS complex. All analyses were implemented using 

MATLAB R2022b software.  

A time coarse-graining approach that relied on a 

second-moment method to derive nineteen temporal scales 

of the original RRI signal [7]. The Rényi entropy 

probabilities for each scale-factored signal were computed 

using the recommended parametrization of the density-

based method that relied on sequences of the RR interval 

time series, as opposed to individual values [11]. Finally, 

an analysis of variance test (ANOVA) and post-hoc t-test 

were employed to assess and compare the statistical 

significance of the disparities observed in the multiscaled 

Rényi entropy measurements between healthy, ARR, and 

CHF recordings. 

 

3. Results and Discussion 

Table 1. Rényi entropies averaged over 90 subjects of 

healthy (NSR) and pathologic (CHF and ARR) RRI signals 

across the first 15 temporal scale factors (SF) versus Rényi 

entropies compared to results from the first temporal scale 

(original signal). Values are shown for 45 subjects, the first 

15 from each group. 

 

SF NSR ARR CHF Sub NSR ARR CHF 

1 60 35 16 1 91 75 8.6 

2 43 29 13 2 60 15 0.4 

3 30 23 9.2 3 21 19 9.0 

4 55 33 11 4 96 29 1.6 

5 46 42 7.5 5 25 2.5 2.5 

6 32 20 10 6 12 2.4 2.0 

7 44 27 8.6 7 26 25 7.9 

8 51 31 8.3 8 88 3.0 0.1 

9 22 16 10 9 88 0.9 1.0 

10 52 25 8.1 10 130 22 3.4 

11 35 14 11 11 12 11 3.7 

12 22 10 7.1 12 93 4.2 0.3 

13 11 10 9.4 13 91 75 8.6 

14 13 10 7 14 60 15 0.4 

15 11 8 7.1 15 21 19 9.0 

Anova 

p-value 
2.3x10-5  1.1x10-3 

 

Rényi entropies were averaged for the 90 subjects of the 

RRI signals of the three groups (NSR, ARR and CHF) 

across 20 temporal scale factors. Table 1 shows the results 

for the first 15 scale factors (SF) for the first 45 subjects 

(15 from each group to fit the number of rows in the table). 

The higher SF till 20 showed insignificant differences and 

thus were not included in the table.  

Across SF 1 to 15 in Table 1, Rényi entropy values for 

the NSR group tend to be higher than those for the ARR 

and CHF groups. The same overall trend can be observed 

across the first 15 subjects (Sub 1 to 15 in Table 1) when 

looking at the first temporal scale. This indicates that NSR 

subjects generally have higher signal complexity across 

various temporal scales. For the ARR group, Rényi 

entropy values tend to be lower than NSR but higher than 

CHF in many cases, suggesting that ARR subjects have 

intermediate signal complexity. The CHF group 

consistently exhibits the lowest Rényi entropy values 

across all SF, indicating lower signal complexity compared 

to NSR and ARR. The lower complexity observed in the 

CHF group is consistent with the known reduced HRV 

complexity often seen in individuals with congestive heart 

failure [23]. 

The ANOVA p-values at the bottom of the table 

indicate the statistical significance of the differences in 
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Rényi entropy values between the three groups (NSR, 

ARR, CHF) across the various SFs. The p-values are very 

small (e.g., 2.3x10^-5 and 1.1x10^-3), suggesting that 

there are significant differences in Rényi entropy values 

between the groups across different temporal scales. The 

Multiscaled groups show a lower p-value than the first 

scale group (original RRI signal) indicating higher 

confidence in the distinction between the groups. Thus, the 

evidence against the null hypothesis is stronger in the case 

of multiscaling, meaning that at least one group mean is 

significantly different from others. Hence, a post hoc t-test 

was conducted to determine which specific groups are 

different from each other and if true, how strongly they 

differ from each other. 

 

Table 2. Post hoc t-test p values showing the extent of the 

significance of the Rényi entropies in discriminating 

healthy and pathological groups from each other. The 

multiscaled data is compared to the data from the first 

temporal scale (original RRI signal). 

 

T-test groups Multiscaled Scale 1 

NSR vs. ARR 2.3x10-6 4.5x10-5 

NSR vs. CHF 2.1x10-6 2.7x10-3 

ARR vs. CHF 1.1x10-3 0.02 

 

Table 2 presents the p-values obtained from post-hoc t-

tests conducted to compare Rényi entropies between NSR 

and those with pathological conditions, specifically ARR 

and CHF. The comparisons were made using both 

multiscaled data and data just from the first temporal scale 

(Scale 1). 

In each of the three comparisons (NSR vs. ARR, NSR 

vs. CHF, ARR vs. CHF), the p-values obtained from the 

analysis of multiscaled had a higher significance than those 

obtained from the analysis of data from Scale 1. This 

means that the group differences in the multiscaled data are 

stronger and more statistically significant due to the 

smaller p-values. The utilization of the multiscaled 

approach with the Rényi entropy calculations tends to yield 

more pronounced statistical significance, indicating its 

potential as a more resilient approach for distinguishing 

between these groups. This supports the hypothesis that the 

traditional MSE and modified Rényi entropy calculations 

are optimized by embedding them together as temporal 

multiscaling modified Rényi entropy analysis.  

The results relate to the multifractality of the heart 

signals demonstrated in [17], where multifractal 

complexity is higher for healthy signals than pathological 

ones. Additionally, a scale-free temporal structure was 

observed in long-term heart rate recordings for healthy 

subjects, which invites more research into longer-term 

signal analysis in comparison to shorter-term physiological 

signals [24,25].   

 

4. Conclusion 

The utilization of a combined methodology using 

temporal cardiac signal multiscaling and the computation 

of Rényi entropy yields an enhanced strategy for the 

discrimination and differentiation of healthy and abnormal 

cardiac signals, surpassing the efficacy of employing each 

technique in isolation. the utilization of Rényi entropies, 

particularly when examining multiscaled data, exhibits 

significant promise in differentiating between healthy and 

diseased cohorts based on the complexity of their RRI 

signals. 
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